Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Multi-component materials are a new trend in catalyst development for electrochemical CO 2 reduction. Understanding and managing the chemical interactions within a complex catalyst structure may unlock new or improved reactivity, but is scientifically challenging. We report the first example of capping ligand-dependent metal–oxide interactions in Au/SnO 2 structures for electrocatalytic CO 2 reduction. Cetyltrimethylammonium bromide capping on the Au nanoparticles enables bifunctional CO 2 reduction where CO is produced at more positive potentials and HCOO − at more negative potentials. With citrate capping or no capping, the Au–SnO 2 interactions steer the selectivity toward H 2 evolution at all potentials. Using electrochemical CO oxidation as a probe reaction, we further confirm that the metal–oxide interactions are strongly influenced by the capping ligand.more » « less
-
Abstract A single device combining the functions of a CO2electrolyzer and a formate fuel cell is a new option for carbon‐neutral energy storage but entails rapid, reversible and stable interconversion between CO2and formate over a single catalyst electrode. We report a new catalyst with such functionalities based on a Pb–Pd alloy system that reversibly restructures its phase, composition, and morphology and thus alters its catalytic properties under controlled electrochemical conditions. Under cathodic conditions, the catalyst is relatively Pb‐rich and is active for CO2‐to‐formate conversion over a wide potential range; under anodic conditions, it becomes relatively Pd‐rich and gains stable catalytic activity for formate‐to‐CO2conversion. The bifunctional activity and superior durability of our Pb–Pd catalyst leads to the first proof‐of‐concept demonstration of an electrochemical cell that can switch between the CO2electrolyzer/formate fuel cell modes and can stably operate for 12 days.more » « less
An official website of the United States government
